
Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 1

OOP and Exception Handling

Introduction to Classes and Objects

Classes and objects are the two basic concepts in object oriented programming. An object is an

instance of a class. A class creates a new type and provides a blueprint or a template using for creating

objects. In Python we already know that everything is an object of some class. In Python, the base

class for all classes is object.

Creating or Defining a Class

The syntax for a class is as follows:

class class_name:

 <statement_1>

 <statement_2>

 ...

 ...

 <statement_n>

The statements in the syntax can be variables, control statements, or function definitions. The

variables in a class are known as class variables. The functions defined in a class are known as class

methods. Class variables and class methods are together called as class members.

The class methods can access all class variables. The class members can be accessed outside the class

by using the object of that class. A class definition creates a new namespace.

Creating Objects

Once a class is defined, we can create objects for it. Syntax for creating an object is as follows:

object_name = class_name()

Creating an object for a class is known as instantiation. We can access the class members using an

object along with the dot (.) operator as follows:

object_name.variable_name

object_name.method_name(args_list)

Following code creates a student class and one object s which is used to access the members of

student class:

class Student:

 #branch is a class variable

 branch = "CSE"

 def read_student_details(self, rno, n):

 #regdno and name are instance variables

 self.regdno = rno

 self.name = n

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 2

 def print_student_details(self):

 print("Student regd.no. is", self.regdno)

 print("Student name is", self.name)

 print("Student branch is", Student.branch)

s = Student() #s is an object of class Student

s.read_student_details("16PA1A0501", "Ramesh")

s.print_student_details()

Class Variables and Instance Variables

Variables which are created inside a class and outside methods are known as class variables. Class

variables are common for all objects. So, all objects share the same value for each class variable.

Class variables are accessed as ClassName.variable_name.

Variables created inside the class methods and accessed using the self variable are known as instance

variables. Instance variable value is unique to each object. So, the values of instance variables differ

from one object to the other. Consider the following class:

class Student:

 #branch is a class variable

 branch = "CSE"

 def read_student_details(self, rno, n):

 #regdno and name are instance variables

 self.regdno = rno

 self.name = n

 def print_student_details(self):

 print("Student regd.no. is", self.regdno)

 print("Student name is", self.name)

 print("Student branch is", Student.branch)

In the above Student class, branch is a class variable and regdno and name are instance variables.

Public and Private Instance Variables

By default instance variables are public. They are accessible throughout the class and also outside the

class. An instance variable can be made private by using _ _ (double underscore) before the variable

name. Private instance variables can be accessed only inside the class and not outside the class.

Following example demonstrates private instance variable:

class Student:

 #branch is a class variable

 branch = "CSE"

 def read_student_details(self, rno, n):

 #regdno and name are instance variables

 self.__regdno = rno #regdno is private variable

 self.name = n

 def print_student_details(self):

 print("Student regd.no. is", self.__regdno)

 print("Student name is", self.name)

 print("Student branch is", Student.branch)

s = Student()

s.read_student_details("16PA1A0501", "Ramesh")

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 3

s.print_student_details()

print(s.__regdno) #This line gives error as ___regdno is private.

self Argument

The self argument is used to refer the current object (like this keyword in C and Java). Generally, all

class methods by default should have at least one argument which should be the self argument. The

self variable or argument is used to access the instance variables or object variables of an object.

__init__() Method (Constructor)

The __init__() is a special method inside a class. It serves as the constructor. It is automatically

executed when an object of the class is created. This method is used generally to initialize the instance

variables, although any code can be written inside it.

Syntax of __init__() method is as follows:

def __init__(self, arg1, arg2, ...):

 statement1

 statement2

 ...

 statementN

For our Student class, the __init__() method will be as follows:

def __init__(self, rno, n):

 #regdno and name are instance variables

 self.regdno = rno

 self.name = n

__del__() Method (Destructor)

The __del__() method is a special method inside a class. It serves as the destructor. It is executed

automatically when an object is going to be destroyed. We can explicitly make the __del__() method

to execute by deleting an object using del keyword.

Syntax of __del__() method is as follows:

def __del__(self):

 statement1

 statement2

 ...

 statementN

For our Student class, __del__() method can be used as follows:

def __del__(self):

 print("Student object is being destroyed");

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 4

Other Special Methods

Method Description

__repr__()
This method returns the string representation of an object. It works on any

object, not just user class instances. It can be called as repr(object).

__cmp__()
This method can be used to override the behavior of == operator for comparing

objects of a class. We can also write our own comparison logic.

__len__()
This method is used to retrieve the length of an object. It can be called as

len(object).

__call__()
This method allows us to make a class behave like a function. Its instance can

be called as object(arg1,arg2,...)

__hash__()
While working with sets and dictionaries in Python, the objects are stored

based on hash value. This value can be generated using this method.

__lt__() This method overrides the behavior of < operator.

__le__() This method overrides the behavior of <= operator.

__eq__() This method overrides the behavior of = operator.

__ne__() This method overrides the behavior of != operator.

__gt__() This method overrides the behavior of > operator.

__ge__() This method overrides the behavior of >= operator.

__iter__() This method can be used to override the behavior of iterating over objects.

__getitem__()
This method is used for indexing, i.e., for accessing a value at a specified

index.

__setitem__() This method is used to assign an item at a specified index.

Private Methods

Like private variables, we can also created private methods. When there is a need to hide the internal

implementation of a class, we can mark the method as private.

It is not recommended to access a private method outside the class. But if needed, we can access a

private method outside the class as follows:

objectname._classname__privatemethod(arg1, arg2, ...)

If needed, we can access private variables using similar syntax as above.

Following example demonstrates a private method:

class Box:

 def __init__(self, l, b):

 self.length = l

 self.breadth = b

 #Private method

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 5

 def __printdetails(self):

 print("Length of box is:", self.length)

 print("Breadth of box is:", self.breadth)

 def display(self):

 self.__printdetails()

b = Box(10,20)

b. display() #recommended

b._Box__printdetails() #not recommended

Built-in Functions

Following are some of the built-in functions to work with objects:

Function Description

hasattr(obj, name)
This function checks whether the specified attribute belongs to the object or

not.

getattr(obj,

name[,default])

This function retrieves the value of the attribute on an object. If the default

value is given it returns the that if no attribute is present. Otherwise, this

function raises an exception.

setattr(obj, name,

value)
This function is used to set the value of an attribute on a given object.

delattr(obj, name) This function deletes an attribute on the given object.

Built-in Class Attributes

Every class in Python by default has some attributes. Those attributes can be accessed using dot (.)

operator. These attributes are as follows:

Attribute Description

__dict__ Gives the dictionary containing the namespace of a class.

__doc__
Gives the documentation string of the class if specified. Otherwise, it

returns None.

__name__ Gives the name of the class

__module__ Gives the name of the module in which the class is defined

__bases__
Gives the base classes in inheritance as a tuple. Otherwise, it returns an

empty tuple.

Garbage Collection

Python runs a process in the background which frees an object from memory when it is no longer

needed or if it goes out of scope. This process is known as garbage collection. Python maintains a

reference count for each object in the memory.

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 6

The reference count increases when we create aliases or when we assign an object a new name or

place it in a list or other data structure. Reference count decreases when an object goes out of scope

and it becomes zero when the object is deleted using del keyword.

Class Methods

A class method is a method which is marked with classmethod decorator and the first argument to the

method is cls. A class method is called using the class name. Class methods are generally used as a

factory method to create instances of the class with the specified arguments. Example of a class

method is as follows:

class Box:

 def __init__(self, l, b):

 self.length = l

 self.breadth = b

 def display(self):

 print("Length of box is:", self.length)

 print("Breadth of box is:", self.breadth)

 @classmethod

 def CreateInstance(cls, l, b):

 return cls(l, b)

b = Box.CreateInstance(10,20)

b. display()

Static Methods

A static method is a method marked with staticmethod decorator. Code that manipulates information

or data of a class is placed in a static method. Static method does not depend on the state of the object.

Static method can be called using class name. Static method does not have any additional arguments

like self and cls.

Following example demonstrates a static method:

class Box:

 sides = None

 def __init__(self, l, b):

 self.length = l

 self.breadth = b

 def display(self):

 print("Length of box is:", self.length)

 print("Breadth of box is:", self.breadth)

 @staticmethod

 def init_sides(s):

 sides = s

 print("Sides of box =", sides)

Box.init_sides(4)

b = Box(10,20)

b. display()

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 7

Inheritance

Creating a new class from existing class is known as inheritance. The class from which features are

inherited is known as base class and the class into which features are derived into is called derived

class. Inheritance promotes reusability of code by reusing already existing classes. Inheritance is used

to implement is-a relationship between classes.

Following hierarchy is an example representing inheritance between classes:

Syntax for creating a derived class is as follows:

class DerivedClass(BaseClass):

 statement1

 statement2

 ...

 statementN

Following example demonstrates inheritance in Python:

class Shape:

 def __init__(self): print("Shape Constructor")

 def area(): print("Area of shape")

 def peri(): print("Perimeter of shape")

class Circle(Shape):

 def __init__(self, r):

 Shape.__init__(self) #Calling parent constructor

 self.radius = r

 print("Circle Constructor")

 def area(self): print("Area of circle is:", 3.142*self.radius*self.radius)

c = Circle(5)

c.area()

Polymorphism

Polymorphism means having different forms. Based on the context, a variable, function, or an object

can have different meaning. As inheritance is related to classes, polymorphism is related to methods.

In Python, method overriding is one way of implementing polymorphism.

Method Overriding

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 8

In method overriding, a base class and the derived class will have a method with the same signature.

The derived class method can provide different functionality when compared to the base class

method.

When a derived class method is created and the method is invoked, the derived class method executes

overriding the base class method. Following example demonstrates method overriding:

class Shape:

 def __init__(self): print("Shape Constructor")

 def area(self): print("Area of shape")

 def peri(self): print("Perimeter of shape")

class Circle(Shape):

 def __init__(self, r):

 Shape.__init__(self) #Calling parent constructor

 self.radius = r

 print("Circle Constructor")

 def area(self):

 print("Area of circle is:", 3.142*self.radius*self.radius)

c = Circle(5)

c.area() #Circle class area method overrides Shape class area method

Exception Handling

Introduction

An error is an abnormal condition that results in unexpected behavior of a program. Common kinds of

errors are syntax errors and logical errors. Syntax errors arise due to poor understanding of the

language. Logical errors arise due to poor understanding of the problem and its solution.

Anomalies that occur at runtime are known as exceptions. Exceptions are of two types: synchronous

exceptions and asynchronous exceptions. Synchronous exceptions are caused due to mistakes in the

logic of the program and can be controlled. Asynchronous exceptions are caused due to hardware

failure or operating system level failures and cannot be controlled.

Examples of synchronous exceptions are: divide by zero, array index out of bounds, etc.) . Examples

of asynchronous exceptions are: out of memory error, memory overflow, memory underflow, disk

failure, etc. Overview of errors and exceptions in Python is as follows:

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 9

Handling Exceptions

Flowchart for exception handling process is as follows:

We can handle exceptions in Python code using try and except blocks. Statements which can raise

exceptions are placed in try block. Code that handles the exception is placed in except block. The

code that handles an exception is known as exception handler and this process is known as exception

handling.

try and except

Syntax for using try and except for exception handling is as follows:

try:

 statement(s)

except ExceptionName:

 statement(s)

Following is an example for handling divide by zero exception using try and except blocks:

numerator = int(input())

denominator = int(input())

try:

 quotient = numerator / denominator

 print("Quotient:", quotient)

except ZeroDivisionError:

 print("Denominator cannot be zero")

Input:

10

0

Output:

Denominator cannot be zero

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 10

Input:

10

2

Output:

Quotient: 5.0

Multiple Except Blocks

Often, there will be a need to handle more than one exception raised by a try block. To handle

multiple exceptions, we can write multiple except blocks as shown below:

try:

 statement(s)

except ExceptionName1:

 statement(s)

except ExceptionName2:

 statement(s)

...

Following is an example for handling multiple exceptions using multiple except blocks:

numerator = int(input())

denominator = int(input())

try:

 quotient = numerator / denominator

 print("Quotient:", quotient)

except NameError:

 print("You are using a variable which is not declared")

except ValueError:

 print("Invalid value")

except ZeroDivisionError:

 print("Denominator cannot be zero")

In the previous example for input 10 and 0, the output displayed is “Denominator cannot be zero”.

When the divide by zero exception was triggered in try block, first two except blocks were skipped as

the type of exception didn’t match with either NameError or ValueError. So, third except block was

executed.

Multiple Exceptions in a Single Block

We can handle multiple exceptions using a single except block as follows:

try:

 statement(s)

except(ExceptionName1, ExceptionName2,..):

 statement(s)

Following is an example which demonstrates handling multiple exceptions using a single except

block:

numerator = int(input())

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 11

denominator = int(input())

try:

 quotient = numerator / denominator

 print("Quotient:", quotient)

except (NameError,ValueError,ZeroDivisionError):

 print("Denominator cannot be zero")

For input 20 and 0, the output for the above code is:

Denominator cannot be zero

Handle Any Exception

In some cases, we might want to execute the same code (handler) for any type of exception. Such

common handler can be created using except as follows:

try:

 statement(s)

except:

 statement(s)

Following is an example which demonstrates handling any exception with a single except block:

numerator = int(input())

denominator = int(input())

try:

 quotient = numerator / denominator

 print("Quotient:", quotient)

except:

 print("Denominator cannot be zero")

For input 8 and 0, the output for the above code is:

Denominator cannot be zero

else Clause

The try and except blocks can be followed by an optional else block. The code in else block executes

only when there is no exception in the try block. The else block can be used to execute housekeeping

code like code to free the resources that are being used.

Raising Exceptions

We can raise exceptions manually even though there are no exceptions using the raise keyword.

Syntax of raise statement is as follows:

raise[ExceptionName [, args [, traceback]]]

ExceptionName is the type of exception we want to raise. Args are the exception arguments and

traceback is the traceback object used for the exception. Following is an example for demonstrating

raise keyword:

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 12

try:

 raise NameError

except NameError:

 print("Name error")

In the above code NameError exception is raised by the raise statement and is handled by the except

block.

Re-raising Exceptions

In Python, we can re-raise the exceptions in the except block by writing raise keyword. Following

code demonstrates re-raising exceptions:

try:

 raise NameError

except NameError:

 print("Name error")

 raise

Output is as follows:

Name error

Traceback (most recent call last):

 File "test1.py", line 2, in <module>

 raise NameError

NameError

Handling Exceptions in Functions

We can use try and except blocks inside functions as we are using until now. In the try block, we can

call a function. If this function raises an exception, it can be handled by the except block which

follows the try block. Following example demonstrates handling exceptions in functions:

def div(num, denom):

 return num/denom

try:

 div(30, 0)

except ZeroDivisionError:

 print("Denominator cannot be zero")

Output for the above program is as follows:

Denominator cannot be zero

finally block

A try block must be followed by one or more except blocks or one finally block. A finally block

contains code that executes irrespective of whether an exception occurs or not. Syntax for finally

block is as follows:

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 13

try:

 statement(s)

finally:

 statement(s)

The finally block is generally used to write resource freeing code. We cannot write a else block along

with finally block.

Built-in Exceptions

There are several built-in or pre-defined exceptions in Python. Python automatically recognizes the

built-in exceptions and handles them appropriately. Following are some of the built-in exceptions in

Python:

Exception Description

Exception Base class for all exceptions

StandardError
Base class for all built-in exceptions (excluding StopIteration and

SystemExit)

SystemExit Raised by sys.exit() function

ArithmeticError Base class for errors generated by mathematical calculations

OverflowError Raised when the maximum limit of a numeric type exceeds

FloatingPointError Raised when a floating point error could not be raised

ZeroDivisionError Raised when a number is divided by zero

AssertionError Raised when the assert statement fails

AttributeError Raised when attribute reference or assignment fails

EOFError
Raised when end-of-file is reached or there is no input for input()

function

ImportError Raised when an import statement fails

LookupError Base class for all lookup errors

IndexError Raised when an index is not found in a sequence

KeyError Raised when a key is not found in the dictionary

NameError Raised when an identifier is not found in local or global namespace

IOError Raised when input or output operation fails

SyntaxError Raised when there is syntax error in the program

ValueError Raised when the value of an argument is invalid

RuntimeError
Raised when the generated error does not fall into any of the above

categories

NotImplementedError
Raised when an abstract method that needs to be implemented is not

implemented in the derived class

Module 5 - OOP and Exception Handling

Downloaded from startertutorials.com (or) stuts.me 14

TypeError Raised when two incompatible types are used in an operation

User-defined Exceptions

If the pre-defined exceptions doesn’t handle your custom error condition, we can create our own

exceptions. Such exceptions are known as user-defined or custom exceptions. Steps in creating

custom exceptions:

1. Create a new class and extend Exception class.

2. Raise the custom exception.

3. Handle the custom exception.

Following example demonstrates creating and using a user-defined exception:

#NegativeError is the custom exception

class NegativeError(Exception):

 def __init__(self, value):

 self.value = value

 def __str__(self):

 return repr(self.value)

try:

 raise NegativeError(-20)

except NegativeError as ne:

 print(ne.value,"is negative.")

